Existence and Stability Analysis of Asymmetric Patterns for the Gierer-meinhardt System

نویسندگان

  • JUNCHENG WEI
  • MATTHIAS WINTER
چکیده

In this paper, we rigorously prove the existence and stability of K-peaked asymmetric patterns for the Gierer-Meinhardt system in a two dimensional domain which are far from spatial homogeneity. We show that given any positive integers k1, k2 ≥ 1 with k1 + k2 = K, there are asymmetric patterns with k1 large peaks and k2 small peaks. Most of these asymmetric patterns are shown to be unstable. However, in a narrow range of parameters, asymmetric patterns may be stable (in contrast to the one-dimensional case). Résumé. Nous prouvons l’existence et la stabilité de les structures asymétriques pour le systéme de Gierer-Meinhardt dans un domaine ouvert deux-dimensionnel qui sont distantes de la homogénéité spatiale. Pour k2 ≥ 1, k1 ≥ 1 il y a des structures avec k1 grands et k2 petits pics. La plupart des solutions asymétriques sont instables. Pour un région petit des paramètres les solutions asymétriques pouvons ětre stables (en contraste d’une dimension).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spikes for the Gierer-meinhardt System in Two Dimensions: the Strong Coupling Case

Numerical computations often show that the Gierer-Meinhardt system has stable solutions which display patterns of multiple interior peaks (often also called spots). These patterns are also frequently observed in natural biological systems. It is assumed that the diffusion rate of the activator is very small and the diffusion rate of the inhibitor is finite (this is the so-called strong-coupling...

متن کامل

Spikes for the Two-dimensional Gierer-meinhardt System: the Strong Coupling Case

Numerical computations often show that the Gierer-Meinhardt system has stable solutions which display patterns of multiple interior peaks (often also called spots). These patterns are also frequently observed in natural biological systems. It is assumed that the diiusion rate of the activator is very small and the diiusion rate of the inhibitor is nite (this is the so-called strong-coupling cas...

متن کامل

Mutually Exclusive Spiky Pattern and Segmentation Modeled by the Five-Component Meinhardt--Gierer System

We consider the five-component Meinhardt-Gierer model for mutually exclusive patterns and segmentation which was proposed in [11]. We prove rigorous results on the existence and stability of mutually exclusive spikes which are located in different positions for the two activators. Sufficient conditions for existence and stability are derived, which depend in particular on the relative size of t...

متن کامل

Existence and Stability Analysis of Multiple-peaked Solutions

We consider the following Gierer-Meinhardt system in R 1 : A 0 (?1) = A 0 (1) = H 0 (?1) = H 0 (1) = 0; where (p; q; r; s) satisses 1 < qr (s + 1)(p ? 1) < +1; 1 < p < +1: We rigorously show that the existence and stability of symmetric and asymmetric N?peaked steady-states can be reduced to computing two matrices in terms of the coeecients D; N; p; q; r; s. The main techniques are the Liapunov...

متن کامل

Pulses in a Gierer-Meinhardt Equation with a Slow Nonlinearity

In this paper, we study in detail the existence and stability of localized pulses in a GiererMeinhardt equation with an additional ‘slow’ nonlinearity. This system is an explicit example of a general class of singularly perturbed, two component reaction-diffusion equations that goes significantly beyond wellstudied model systems such as Gray-Scott and Gierer-Meinhardt. We investigate the existe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007